Л 3. Понятие вектора. Прямоугольная и полярная системы координат в пространствах. Проекция вектора на оси Линейное пространство. Размерность и баз ис линейного пространства.

Определение. Вектором называется отрезок с выбранным направлением или направленный отрезок. Вектор с началом в точке A и с концом в точке B обозначается через $\stackrel{\rightarrow}{AB}$, кроме того, вектор можно обозначать одним символом, например $\stackrel{\rightarrow}{a}$.

Вектором и обозначается через $\vec{0}$. Дпина отрезка, изображающего вектор \vec{a} , называется модулем этого вектора и обозначается $\begin{vmatrix} \vec{a} \\ a \end{vmatrix}$. Векторы \vec{a}_1 , \vec{a}_2 ,..., \vec{a}_n , параллельные одной прямой называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору.

Два вектора \vec{a} и \vec{b} считаются равными, если они равны по модулю коллинеарный и одинаково направлены V_B этого определения следует, что при параллельном переносе вектор не меняется, поэтому в качестве начала вектора можно выбрать любую точку.

Линейными операциями над векторами называются умножение вектора на число и сложение векторов.

Определение. Произведением вектора \vec{a} на число α называется такой вектор \vec{a} , что выполняются три условия.

1) $\alpha \stackrel{\rightarrow}{a} = |\alpha| \stackrel{\rightarrow}{|a|}$; 2) $\alpha \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{|a|}$; 3) Вектор $\alpha \stackrel{\rightarrow}{a}$ со направлен вектору $\stackrel{\rightarrow}{a}$, если $\alpha > 0$ и направлен в противоположную сторону, если $\alpha < 0$.

Определение. Суммой векторов \vec{a} и \vec{b} , исходящих из одной точки, называется вектор, совпадающий с диагональю параллелограмма, образованного векторами \vec{a} и \vec{b} , исходящий из той же точки. Если вектора \vec{a} и \vec{b} не исходят из одной точки, то их начала необходимо с помощью параллельного переноса перенести в одну точку. Эго определение называется правилом параллелограмма. При сложении боль пого числа векторов удобнее пользоваться следующим определением, равносильным предыдущему.

Суммой векторов $\vec{a_1}, \vec{a_2}, ..., \vec{a_k}$, у которых начало $\vec{a_i}$ вектора совпадает с концом $\vec{a_{i-1}}$ $(i=2\div k)$, является вектор, соединя ющий начало вектора $\vec{a_1}$ с концом вектора $\vec{a_k}$.

Эти линейные операции над векторами обладают следующими свойствами.

1.
$$1 \cdot \overrightarrow{a} = \overrightarrow{a}$$
; **2.** $0 \cdot \overrightarrow{a} = \overrightarrow{0}$; **3.** $\alpha \left(\beta \overrightarrow{a} \right) = (\alpha \beta) \overrightarrow{a}$; **4.** $(\alpha + \beta) \left(\overrightarrow{a} \right) = \alpha \overrightarrow{a} + \beta \overrightarrow{a}$;

5.
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$
; **6.** $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$; **7.** $\alpha (\overrightarrow{a} + \overrightarrow{b}) = \alpha \overrightarrow{a} + \alpha \overrightarrow{b} \alpha$.

Операция разности векторов \vec{a} и \vec{b} сводится к двум линейным операция м $\vec{a} - \vec{b} = \vec{a} + (-1)\vec{b}$, однако часто удобней пользоваться следующим специальным определение м равносильным выше приведённому.

Определение. Разность ю векторов \vec{a} и \vec{b} , исходящих из одной точки называется вектор, соединя ющий конец вектора \vec{b} с концом вектора \vec{a} и направленный в сторону конца вектора \vec{a} .

Определение. Линейной комбинацией векторов $\vec{a_1}, \vec{a_2}, ..., \vec{a_n}$ с коэ ффициентами $C_1, C_2, ..., C_n$ называется вектор $C_1 \vec{a_1} + C_2 \vec{a_2} + ... + C_n \vec{a_n}$.

Эта комбинация обладает двумя основными свойствами.

- 1) Если векторы $\vec{a_1}$, $\vec{a_2}$,..., $\vec{a_n}$ коллинеарные некоторой прямой, то любая их линейная комбинация будет коллинеарной той же прямой. Векторы $\vec{a_1}$, $\vec{a_2}$,..., $\vec{a_n}$ называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.
- 2) Если векторы $\vec{a_1}$, $\vec{a_2}$,..., $\vec{a_n}$ компланарны некоторой плоскости, то любая их линейная комбинация компланарна той же плоскости

Определение. Векторы $\vec{a_1}, \vec{a_2}, ..., \vec{a_n}$ называются линейно зависимыми, если существуют такие числа $C_1, C_2, ..., C_n$, не все равные нулю, что $\vec{c_1} \vec{a_1} + \vec{c_2} \vec{a_2} + ... + \vec{c_n} \vec{a_n} = 0$

В противном случае векторы $\vec{a_1}, \vec{a_2}, ..., \vec{a_n}$ называ югся линейно независимыми.

Определение. Совокупность п линейно независимых векторов называется базисом

Мно жество всех плоских или пространственных векторов, в которых определены операции сложения векторов и умножение вектора на число, явля югся простейшими примерами векторного пространства.

Определение. Множество векторов, в котором определены операции сложения векторов и умножения вектора на число, удовлетворяющее приведенным выше семи свойствам называется векторным пространством Оказывается, что в любом векторном пространстве всегда можно выбрать несколько векторов, из которых с помощью линейных комбинаций однозначно можно получить любой вектор этого пространства и которые являются базисными.

Определение. Любой ненулевой вектор \vec{e} на прямой называется базисным вектором этой прямой. Любая пара неколлинеарных векторов

 $\left\{ \stackrel{\rightarrow}{e_1}, \stackrel{\rightarrow}{e_2} \right\}$ плоскости называется базисом этой плоскости Любая тройка некомпланарных векторов $\left\{ \stackrel{\rightarrow}{e_1}, \stackrel{\rightarrow}{e_2}, \stackrel{\rightarrow}{e_3} \right\}$ называется базисом пространства.

Декартова система координат, базис которой ортонормирован, называется прямоугольной системой координат.

Полярная система координат определена, если задана точка Q называемая полюсом, и исходящий из полюса луч l, которой мы назовем полярной осью

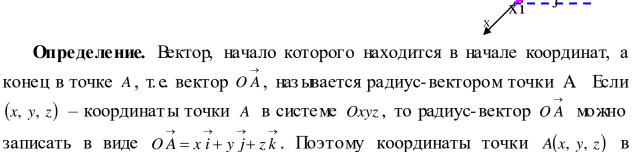
Декартовы координаты точки выражаются через ее полярные координаты

$$x = r \cos \varphi$$
, $y = r \sin \varphi$.

Определение. Коэ ффициенты линейной комбинации базисных векторов, выражающие вектор \vec{a} на прямой, в плоскости или в пространстве называются, координатами вектора \vec{a} в данном базисе. Вектор, лежащий на прямой, имеет одну координату x, на плоскости — две координаты x, y; в пространстве — три координаты x, y, z. Векторы удобно отождествлять с координатами в некотором выбранном базисе. Так, вектор \vec{a} в пространстве записывают в виде: $\vec{a} = (x, y, z)$.

Теоре ма. При сложении векторов их соответствующие координаты складываются, при умножении вектора на число все его координаты умножаются на это число.

Пусть в пространстве имеется прямоугольная декартова система координат Oxyz. С ней связан стандартный базис из единичных взаимно перпендикулярных векторов, расположенных вдоль осей Ox, Oy, Oz. Эги базисные вектора обозначаются через \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} .



системе Oxyz и вектора \overrightarrow{OA} в базисе $\left\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}.\right\}$ — это одни и те же числа.

Теоре ма. Пусть в декартовой системе координат Oxyz заданы две точки $A(x_A, y_A, z_A)$ и $B(x_B, y_B, z_B)$, тогда в базисе $\left\{ \vec{i}, \ \vec{j}, \ \vec{k}. \right\}$ вектор \overrightarrow{AB} имеет координаты $((x_B - x_A), \ (y_B - y_A), \ (z_B - z_A))$.

Теоре ма. Пусть вектор \vec{a} имеет координаты x, y, z в базисе $\{\vec{i}, \vec{j}, \vec{k}.\}$, тогда $x = \Pi P_{ox} \vec{a}, y = \Pi P_{ox} \vec{a}, z = \Pi P_{oz} \vec{a}$.

Определение. Проекцией вектора \vec{a} на ненулевой вектор \vec{b} (обозначение $\Pi P_{\vec{b}} \vec{a}$) называется его проекция на ось L, проведенная через вектор \vec{b} .

Теоре ма 2 Расстояние между точками $A(x_A, y_A)$ и $B(x_B, y_B)$ на плоскости Оху находится по формуле $|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$.

Теоре ма 3. Расстояние между точками $A(x_A, y_A, z_A)$ и $B(x_B, y_B, z_B)$ в пространстве Oxyz находится по формуле

$$|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
.

Пример. Пусть A(1,1,1), B(2,3,-1). Найдем |AB|

$$|AB| = \sqrt{(2-1)^2 + (3-1)^2 + (-1-1)^2} = \sqrt{9} = 3.$$

Определение. Разделить отрезок AB в отношении λ ($\lambda > 0$) это значит найти на нём такую точку M , что $\frac{|AM|}{|MB|} = \lambda$.

Теоре ма. Пусть точка $M(x_{_M},y_{_M},z_{_M})$ делит отрезок AB в отношении λ , где $A(x_{_A},y_{_A},z_{_A})$ и $B(x_{_B},y_{_B},z_{_B})$, тогда

$$\begin{cases} x_M = \frac{x_A + \lambda x_B}{1 + \lambda}; \quad y_M = \frac{y_A + \lambda y_B}{1 + \lambda}; \quad z_M = \frac{z_A + \lambda z_B}{1 + \lambda} \end{cases}$$

Следствие. Если точка M является серединой отрезка AB, то

$$\begin{cases} x_M = \frac{x_A + x_B}{2}; & y_M = \frac{y_A + y_B}{2}; & z_M = \frac{z_A + z_B}{2}. \end{cases}$$

Эт и формулы получа ются из формул теоремы при $\alpha = \beta = 1$.